Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 176: 274-83, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21185357

RESUMO

Traditionally studies aimed at elucidating the molecular mechanisms underlying cerebellar motor learning have been focused on plasticity at the parallel fiber to Purkinje cell synapse. In recent years, however, the concept is emerging that formation and storage of memories are both distributed over multiple types of synapses at different sites. Here, we examined the potential role of potentiation at the mossy fiber to granule cell synapse, which occurs upstream to plasticity in Purkinje cells. We show that null-mutants of N-methyl d-aspartate-NR2A receptors (NMDA-NR2A(-/-) mice) have impaired induction of postsynaptic long-term potentiation (LTP) at the mossy fiber terminals and a reduced ability to raise the granule cell synaptic excitation, while the basic excitatory output of the mossy fibers is unaffected. In addition, we demonstrate that these NR2A(-/-) mutants as well as mutants in which the C terminal in the NR2A subunit is selectively truncated (NR2A(ΔC/ΔC) mice) have deficits in phase reversal adaptation of their vestibulo-ocular reflex (VOR), while their basic eye movement performance is similar to that of wild type littermates. These results indicate that NMDA-NR2A mediated potentiation at the mossy fiber to granule cell synapse is not required for basic motor performance, and they raise the possibility that it may contribute to some forms of vestibulo-cerebellar memory formation.


Assuntos
Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Atividade Motora/fisiologia , Fibras Nervosas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Masculino , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia
2.
Proc Natl Acad Sci U S A ; 104(40): 15911-6, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17895389

RESUMO

In vitro whole-cell recordings of the inferior olive have demonstrated that its neurons are electrotonically coupled and have a tendency to oscillate. However, it remains to be shown to what extent subthreshold oscillations do indeed occur in the inferior olive in vivo and whether its spatiotemporal firing pattern may be dynamically generated by including or excluding different types of oscillatory neurons. Here, we did whole-cell recordings of olivary neurons in vivo to investigate the relation between their subthreshold activities and their spiking behavior in an intact brain. The vast majority of neurons (85%) showed subthreshold oscillatory activities. The frequencies of these subthreshold oscillations were used to distinguish four main olivary subtypes by statistical means. Type I showed both sinusoidal subthreshold oscillations (SSTOs) and low-threshold Ca(2+) oscillations (LTOs) (16%); type II showed only sinusoidal subthreshold oscillations (13%); type III showed only low-threshold Ca(2+) oscillations (56%); and type IV did not reveal any subthreshold oscillations (15%). These subthreshold oscillation frequencies were strongly correlated with the frequencies of preferred spiking. The frequency characteristics of the subthreshold oscillations and spiking behavior of virtually all olivary neurons were stable throughout the recordings. However, the occurrence of spontaneous or evoked action potentials modified the subthreshold oscillation by resetting the phase of its peak toward 90 degrees . Together, these findings indicate that the inferior olive in intact mammals offers a rich repertoire of different neurons with relatively stable frequency settings, which can be used to generate and reset temporal firing patterns in a dynamically coupled ensemble.


Assuntos
Neurônios/fisiologia , Núcleo Olivar/fisiologia , Animais , Membrana Celular/fisiologia , Cerebelo/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Sensibilidade e Especificidade , Limiar Sensorial/fisiologia
3.
Ann N Y Acad Sci ; 978: 391-404, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12582068

RESUMO

Electrotonic coupling by gap junctions between neurons in the inferior olive has been claimed to underly complex spike (CS) synchrony of Purkinje cells in the cerebellar cortex and thereby to play a role in the coordination of movements. Here, we investigated the motor performance of mice that lack connexin36 (Cx36), which appears necessary for functional olivary gap junctions. Cx36 null-mutants are not ataxic, they show a normal performance on the accelerating rotorod, and they have a regular walking pattern. In addition, they show normal compensatory eye movements during sinusoidal visual and/or vestibular stimulation. To find out whether the normal motor performance in mutants reflects normal CS activity or some compensatory mechanism downstream of the cerebellar cortex, we determined the CS firing rate, climbing-fiber pause, and degree of CS synchrony. None of these parameters in the mutants differed from those in wildtype littermates. Finally, we investigated whether the role of coupling becomes apparent under challenging conditions, such as during application of the tremorgenic drug harmaline, which specifically turns olivary neurons into an oscillatory state at a high frequency. In both the mutants and wildtypes this application induced tremors of a similar duration with similar peak frequencies and amplitudes. Thus surprisingly, the present data does not support the notion that electrotonic coupling by gap junctions underlies synchronization of olivary spike activity and that these gap junctions are essential for normal motor performance.


Assuntos
Potenciais de Ação/fisiologia , Conexinas/deficiência , Junções Comunicantes/fisiologia , Núcleo Olivar/fisiologia , Desempenho Psicomotor/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Conexinas/genética , Proteínas do Olho/genética , Junções Comunicantes/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Núcleo Olivar/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...